نبيل قادر العزاوي
مديرة محمود البليمي
قسم علوم الأرض – كلية العلوم
جامعة الموصل

الملخص

وجد من دراسة الفواصل في تكوين البلاسيتي تكوين الفتحة وتكوين انفجات في منطقة بعشيقة، انتشرت مجموعة من تكاثر متعامدته من الفواصل هما ac و bc مع توأمة بعض أنظمة الفواصل باعداد قليلة.

كانت الطرق التدريجية التي تكونت الفواصل ac و bc و hko في صخور هذه المنطقة ذات اتجاه ثابت (شمال – جنوب) قبل وأثناء تكون الطي من الأوسين إلى ما قبل البلاسيتي. أما مجموعة الفواصل bc فتضمنت أثناء تكون الطية بالتي آبل أنواع الشوته المفصلي وأسلوب الشوته الجنهاي وباءعذأ اتجاه شمالي شرق – جنوب غرب وشمال – جنوب على التوالي. أما فترة ما بعد تكون الطية فيعتقد بأن الفواصل hko الحاد حول b قد تطورت إلى ازاحات مسببي تحت سطحية أثرت على هندسة طية بعشيقة.

Geometry and Genetics of Joints In Bahshiqa Area

Nabeel K. Al- Azzawi Mayada M. Al-Dulaymi

Dept. of Geology
College of Science
Mosul University

ABSTRACT

Two main sets of joints were found in Pila Spi, Alfatha, and Injana formations in Bahshiqa area. These sets are ac & bc joints. Joint system were also found but in minor amount.

The paleostress δ1 which was responsible for the formation of ac and hko acute about a joints, was trending north–south before and during the formation of the major anticline (from Middle Eocene – pre-Pliocene).

The bc type of joints was formed during the fold formation by two mechanism types (hinge deformation and limb deformation). In these two mechanisms, the axis δ1 was trended northeast – southwest and north–south respectively. At the pre-folding time the hko acute about b developed to form subsurface strike slip displacements which influenced the geometry of Bahshiqa Anticline.
المقدمة

تعتبر منطقة بكشلة في الجزء الشمالي الشرقي من العراق، 25 كم شمال شرق مدينة الموصل (الشكل 1). تتميز المنطقة طية بكشلة والتي توصف بأنها طية محدبة ثلاثية الطابق، غير متماثلة حيث أن جناح الشمالي الغربي أكثر ميلاً من الجناح الشمالي الشرقي، وتستمد باتجاه شمال غرب - جنوب شرق. إن الجزء المنكشفس من التتابع الطباقي يضم كلاً من التكوينات التالية: أولاً تكوينات البلاسيفي (المويسين الأوسط والآثري) وينكشف هذا التكوين في المنطقة الوسطى ويضم لب وجزء من جناحي الطية. ثانياً: تكوينات الصخور (المويسين الأوسط)، الذي يقع فوق تكوين البلاسيفي ويكشف هذا التكوين على شكل مكشاف صخري موزع على جنحتي الطية. ثالثاً: تكوينات النباتي (المويسين الأعلى) الذي يقع فوق تكوين الفتحة ويظهر أحياناً على شكل صخور مستمرة الانكشاف أو على شكل مكشاف صخري موزع نتيجة لطغطيتها بالرواسب الحديثة.

وصف الزعراوي (1982) طية بكشلة المحمية وذكر بأنها تمتد شمال غرب - جنوب شرق بطول 15 كم، مثعبها ونصف طولها الموجي بحدود 200 سم على التوالي، وذات غطاسين قليلي الميل حيث يقع الغطاس الشمالي الغربي قرب قمة كانونا. أما الغطاس الجنوبي الشرقي فإن قرب طريق مواصلة عقيرة، وذكر الزعراوي أن طية بكشلة انها صخريةfraction غير متماثلة مائدة نحو الجنوب الغربي وان ميل الجناح الشمالي الشرقي والجناح الجنوبي الغربي هو بمعدل 26° و 62 درجة على التوالي. إن وضعية محور الطية هي 110/8 عند الغطاس الجنوبي الشرقي، وإن وضعية المستوي الماوري هي 110/13 وتبعد قيمة الزاوية الداخلية 92 درجة. وهي طية ذات مفصلين، يقع المفصل الشمالي الشرقي بين المنطقة المفصلية والجناح الشمالي الشرقي ووضعته 252/50، أما المفصل الجنوبي الغربي فيقع بين المنطقة المفصلية والجناح الجنوبي الغربي ووضعته 386/3.

بصفة عامة، وجدت الفوائد المتعلقة بالقوافل على طول مسار أحد عمودا على محور طية بكشلة ويضم أحسن انكسافات التكوينات الثلاثة (البلاسيفي، الفتحة، وانحدار). هذا بالإضافة إلى المعلومات التي جمعت من مناطق مختلفة من الطية، إن الهدف الرئيسي من هذا البحث هو تحليل القوافل وتصنيفها هندسياً.
الشكل (1) يوضح منطقة الدراسة
نبيل قادر الخزاوي و ميادة محمود الدليمي

إلى مجاميع وأنظمة وإيجاد اتجاه الإجرادات القديمة التي كونتها، ثم جدولات هذه الإجرادات حسب عصرها النسيبي وما إذا كانت رئيسية أم ثانوية وبالتالي استنتاج اصل تكوين كل نوع من الفواصل وعلاقته مع تكوين طيلة بعشيقة.

هندسية الفواصل

لقد اعتمدت هذه الدراسة على تصنيف الفواصل التي وجدت في التكوينات الثلاثة حسب علاقتها الهندسية مع المحاور الثلاثية (a, b & c) وترتبط هذه المحاور بعلاقة هندسية مع الطية، فالمحور ديزي اتجاه ميل الطبقات وعمودي على محور الطية فيما يوازي المحور بال محور الطية ويتعامد المحور ج مع مستوى الطبقات (Ramsay & Huber, 1987) استنادًا إلى ذلك فقد صنفت الفواصل في التكوينات الثلاثة وكم يلي:

الفواصل في تكوين البلاسباني:

(1) بمصطلح (92) قراءة لمستويات فواصل هذا التكوين على شكل أقطاب على الشبكة للقطبية (Polar net) ثم نص الشكل الصوروجرافي للكتونوري لهذه الفواصل كما في الشكل (2a) تبين من هذا الشكل أن هناك مجموعتين من الفواصل وأن معدل وضعية المجموعة الأولى هو (82/8/35) وتصنف على أنها فواصل من مجموعة ac حسب علاقتها الهندسية مع المحاور التكنولوجية الثلاثة. أما معدل وضعية المجموعة الثانية فهي (80/62) والتي تصنف على أنها فواصل من مجموعة bc على الرغم من The complimentary ولم تظهر لنا تجوم مثل المستوى الثاني للقصص عدم تعامدها مع الفواصل ac ولئن كان موقعها لتتبع هذه المجموعة في الشكل (2a) لا تحتوي على تجوم تمثل انتظار الفواصل لكن عموم وجوده هدفه تجميع جعلنا نعتبرها فواصل من نوع bc. إن هاته المجموعتين تمثلان الفواصل الأكثر انتشارًا في المنطقة الحاد hol. توصيل b الحاد حول hko الحاد حول a و hko الحاد حول bc بالإضافة إلى ذلك هناك أنظمة فواصل من نوع hko حول hko. وحول bc. وقد لوحظ في الحق أن هذه الفواصل متواجدة بأعداد قليلة في المنطقة.

الفواصل في تكوين الفتحة:

إن الشكل (2b) هو الشكل الصوروجرافي للكتونوري لتصنيط (65) قطب من الفواصل جمعت من هذا التكوين. وان هذا الشكل يوضح وجود مجموعتين متعامدتين من الفواصل ذات انتشار واسع. إن وضعية المجموعة الأولى تعزى (32/88/50) وتتصنف على أنها فواصل من مجموعة bc أما وضعية المجموعة الثانية فإنها (82/62/80) وتتصنف على أنها فواصل من مجموعة ac. وذلك أيضًا أنظمة من hol الحاد حول b ونظام hko الحاد حول a ونظام hko الحاد حول bc. ونظام okl الحاد حول c.
الشكل (2) الشكل الستيريوغرافي الكلاسيكي للحواكيل
التصنيف الهندسي للفواصل/طية بعشية المحدبة/تكوين أنيجاه

مجموع قيامات الفواصل = 150
وضعية الطبقية التي أخذت منها القراطات هو 62/278

مجمع وناتجة الفواصل

<table>
<thead>
<tr>
<th>AC</th>
<th>BC</th>
<th>AB</th>
<th>HKO a</th>
<th>HKO b</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>42</td>
<td>0</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>HOL a</td>
<td>HOL c</td>
<td>OKL b</td>
<td>OKL c</td>
<td>HKL 1</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>HKL 2</td>
<td>HKL 3</td>
<td>HKL 4</td>
<td>HKL 5</td>
<td>HKL 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>HKL 7</td>
<td>HKL 8</td>
<td>HKL 9</td>
<td>HKL 10</td>
<td>HKL 11</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HKL 12</td>
<td>HKL 13</td>
<td>HKL 14</td>
<td>HKL 15</td>
<td>HKL 16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول (1): نتائج تصنيف الفواصل بواسطة البرنامج (GCJ)

الأنواع الموجودة في الفواصل السابق.

وقد لوحظت أنظمتها الفواصل بأعداد قليلة في الفواصل الثلاثة على طول مسار جميع المعلومات.

ومن المتوقع أن تظهر هذه الفواصل بالشكل الديبرونغالي الكنتوري (شكل 2) والسبب في هذا يعود إلى تأثير عملية الكتورة (Contouring) التي تغطي الأعداد القليلة غير المتجمعة من الفواصل. لقد حلت الفواصل المأخوذة من تكوين أنجاتة بواسطة البرنامج (GCJ) (Al-Azzawi & Al-Jumaily, 2000).

الكتوري النتائج موضحة في الجدول (1). إن التفوق في هذا الجدول توضح عدد الفواصل لمجموعة الرئيسية bc و ac وعدد الفواصل في الأنماط الأخرى أقل انتشارًا والتي لم تظهر في الشكل الكنتوري okl و b الحاد حول hko, a الحاد حول hko, c الحاد حول hko, c الحاد مع c.
تحليل اتجاه الإجهاد القديمة

إن القوافل المقاسة من منطقة الدراسة موجودة في ضخور ومن ثم عبرها من الأ ليسون الراط إلى ما قبل الهليوس، وهذا يعني أن الإجهاد الذي تكوّنت هذه القوافل كانت فعالة ضمن نفس الفترة الزمنية (Gomez, 1989). لقد اعتمد في قياس اتجاه هذه الإجهاد على القوافل من مجموع تقليدي والهليوس والهليوس إن أي تكنيا بفعل إجهاد شديد موضعية ناتجة عن قوى انضغاطية قليمة. ولذا فهي تسحيق في وكالها hko و oki, holi, i Billings, (1972), (Tension Fracture) كسور شديه من نوع الكسور الضغطية، وظهرت بكمات قليلة بحيث لا يمكن الاعتماد عليها في تحديد الإجهاد القديمة. لقد استخدم الأسلوب من مستوى 82 (Hancock & Kadhi, 1978).

في تحديد اتجاهات الإجهاد التي تكوّنت هذه القوافل، وقد استخدمت هذه الطريقة نظرا لعدم توفر أعداد كبيرة من القوافل القديمة، واعتمادا على ذلك فقد تم حساب وضعية مستوى 82 لكل مجموعة من القوافل والتكتونات الثلاثة. إن المستوي 82 والذي يضم المحاور 61 و 62 هو مستوى مطاقي لمستوى الفاصل الذي يعود إليه، وهذا يعني أن مستوى 82 عمودي إلى قطب مستوي الفاصل في الإسقاط المستوي وعние، وإن اتجاه المحور 83 يطبق مع اتجاه قطب مستوي الفاصل الذي ينتمي إليه (المشكلة 3). (Hancock & Kadhi, 1978, 82). واستنادا إلى ذلك فقد قسم مستوى 82 للمجموع القوافل والهليوس في التكتونات الثلاثة (شميطة 4)، تم جدول وضعية هذه المستويات في الجدول 2 على شكل اتجاه المضرب /مقدار الميل. إن الجدول (2) يوضح تشبيه وضعية هذه المستويات العائدة إلى القوافل، أما القوافل في التكتونات الثلاثة، فإن وضعية مستويات 82 للإجهاد المختلفة: الأول هو 80/320 و 30/090 و 30/390 و 30/890 و 80/620 و 80/862. وتمثل وضعية تلك المستوي في تكوين البلاسي. وتأسسة على نتائج تحليل هذه المعلومات فمن الممكن استنتاج مايلي:

1- إن اتجاه الإجهاد القديمة (81) الذي كون القوافل هو تقريباً مشابه خلل الفترة الجيولوجية من ما بعد الأيلوسين الأفست إلى ما قبل الهليوس. وإن اتجاه محاور الإجهاد هو كالأتي 81 بوضع أفق واتجاه شمال - جنوب وهذا ينطبق مع اتجاه 81 التي كونت الطية، والمحور 83 أفقياً أيضاً، أما المحور 82 فتكون شاقولا، وهذا ما توضحه قيم وضعية المستوي 82 في الجدول (2). ونستنتج أيضاً أن هذه الإجهاد كانت مستمرة خلال الزمن الجيولوجي المذكور دون تغيير كبير في اتجاهها ومن المحتمل أن هذه القوافل قد تكون قبل تكون الطية ...
الشكل (3) العلاقة الهندسية بين الفواصل ومستوى $z - z_0$
الشكل (4) اشكال ستيريوغرافية توضح وضعية مستويات z-التكوينات الثلاثة
<table>
<thead>
<tr>
<th>التكوين</th>
<th>Ac set</th>
<th>Bc set</th>
</tr>
</thead>
<tbody>
<tr>
<td>انفجار</td>
<td>90 / 004</td>
<td>40 / 090</td>
</tr>
<tr>
<td>الفتحة</td>
<td>82 / 006</td>
<td>40 / 088</td>
</tr>
<tr>
<td>البلاستيكي</td>
<td>82 / 356</td>
<td>80 / 062</td>
</tr>
</tbody>
</table>

جدول (2) وضعية مستويات 18-28 لمجموعتي الفواصل و للتكتونيات الثلاثة

واستمرت خلال فترة تكوينها (Reches, 1979; Numan, 1997). وهذا الاستنتاج يستند على أن الطلية قد تكونت خلال السيويسين - البلاستيكي نتيجة للاجهادات الانضغاطية الناجمة عن اصطدام الصفيحة الغربية بالصفيحة الإيرانية والتركية.

 تمتد الكائنات على أن الفواصل يمكن أن تتلاطم فين، وهذا يعني أن الفواصل هي مكون من الفواصل BE التي تتبخر بعثة، وتمت تكوين الفواصل AC قد تكونت في طبقة عميقة. لقد تكونت الفواصل في الأقسام المفصلية والأسلاك الثاني بسمى التشوه Hinge deformation بالأسلاك الأول هو أسلوب التشوه المفصلية بأسلاك: انفجار وفرز الأسلوب، يسبي ظهور المستويات 81 limb deformation الجناحي.

في الأماندة لهذه الفواصل باتجهات مختلفين كما ذكر سابقا. إن الفواصل الناجمة عن التشوه المفصلي والتي يتميّز بعملية تتكون في طبقة عميقة ويكون المحمور 81 أفقيا باتجاه شمالي شرق - جنوب غرب والمحمور 82 يكوّن موازيا لمستويات التطبّق. أما المحمور 82 فيكون شاقوليا (الشكل 5a)، وقد وجدت هذه الفواصل سائدة في تكوين البلاستيكي. أما في تكوين الفتحة والقطع فإن السيادة للفواصل من النوع الناجم عن التشوه الجناحي والتي تتميز بعملية فلزية وتشكل الفحاصل الناجمة من انزلاق الطبقات Shear stress في منطقة جناحي الطلية نتيجة للاجهادات القصية (العزاوي، 1982). أن توزيع محور الإجهاد في هذا النوع هو كالآتي: يمتد flexure folding المحمور 81 باتجاه شمال جنوب ويتضمن ميل مستوى الفواصل الذي يعود اليه والمحمور 82 يكون أفقيا، أما المحمور 83 فيكون شبه شاقوليا. في هذا النوع من الفواصل من أجل تحديد المحور 81 مع اتجاه الإجهاد الرئيسي باختلاف أن المحمور 81 يكون مائلًا لانه مسلت على طبقه مائلة. إن الفواصل الناجمة عن هذين الأسلاكين هما مختلفين من الناحية الهندسية، فإن ميال الفواصل الناجمة عن الأسلاك الأول أكبر مما هو عليه في فواصل الأسلاك الثاني (الجدول 2). وقد اعتمدت هذه الصفة كأساس للتفرّق بينهما. إن كثرة تواجد فواصل الفشل المفصلي في تكوين البلاستيكي أكثر من التكوينين
الشكل (5) تطور الفواصل الشديدة

- أسلاوب التشوه المفصلي
 (Blas & Feuga, 1981)
- أسلاوب التشوه الجناحي
 (Mattauer, 1971)
الأخرين يعود إلى صمود صخور تكوين البلاستسي، وخاصة المنطقة المفصلية أمام عوامل التعرية ونقاءها لمد ألان. وعلى العكس ففي تكوين الفتحة وانجاحه فقد تعرت صخور هذين التكوينين من المنطقة المفصلية وصمدت في منطقة الجناحي لذا نلاحظ انتشار التواصل الناتجة عن الشروط الجناحي.

فيهما.

لقد تكونت الفواصل بواسطة اجهادات رئيسية وكما ذكر سابقا، ومجموعة الفواصل قد تكونت بإجهادات ثانوية ناتجة عن القوى الأولية وبالألوسين السابق ذكرهما. أما أنظمة التواصل قبلية الانتشار فإن اتجاه المحور 81 ببطاق اتجاه مستوي 81 82 لأحذ مجموعي الفواصل أو ac. فان اتجاه المحاور الإجهاد لنظام hko المحاد حول a ببطاق اتجاه مستوي 82 الفواصل ؛ أي أن هذا النظام قد تكون مع هذه المجموعة، واتجاه المحاور لنظام hko المحاد حول a فلا ينطبق مع أي من المجموعتين ومن المحتمل أن تكونت بواسطة اجهادات عمودية ثانوية ناتجة عن الإجهادات الرئيسية، وكذلك أنظمة نادرة الظهور قد أُهمِلَت.

لعدم أهميتها.

المناقشة والاستنتاجات

أصرت البحث دراسة اتجاه الإجهادات القصبية وقد كان لعدم وجود عدد كاف من الفواصل القصبية أو الفواصل البسيط في استخدام مستوي 8182 للوصول إلى اتجاه القوى القصبية. وأن الجدول (2) والشكل (4) يوضحان اتجاهات هذا المستوي في توسيعات مختلفة كما سبق ذكرها. لقد أثرت تحديث المعلومات إن الفواصل سببها إجهاد اتجاه شمال - جنوب. إن هذا الاتجاه أُثير من الألوسين الأوسط إلى ما قبل البليوسين حسب سمته الصخور المكتشفة في المنطقة، أما فواصل ac فقد تكونت بأسلوبين مختلفين.

وإله الخدمات ثانوية متطرفة من القوى الرئيسية.

وفيما يلي عرض لأصل الفواصل بالمقارنة مع الموديل المذكور والدراسات السابقة. إن مجموعة هذا الكسور شديدة تكوينها شمال - جنوب أي أنها شببه عمودية ac للواصل تعتمد تقريبا شمال - جنوب على محور الطليا. وإن نظام الفواصل المحاد حول a تعتبر من الفواصل القصبية التي يكمن فيها اتجاه شمال - جنوب تقريبا. إن هذين الالوان من الفواصل يشتركان بصفة أنها عموديان على سطح الطليا واتجاه محور الإجهاد 81 في الحالتين متطلعين، وإن فترة تكونهما ربما قد بدأت قبل.
تكون الطية، وهذا يتعلق بـ Maذكره (1998،)، حول الفواصل التي اتجاهها شمال - جنوب وشمال شرق - جنوب غرب. وقد أثبت الباحث المذكور أن هذه الفواصل هي متزامنة مع الأتلاق الطيوي وتتضمن هذا الاستنتاج مع الموديل الذي اقترحه (Bles & Feuga،1986،) Prefolding Joints . وجد الآراء هنا أن تكون هذه الفواصل (مجموعة ac) تكوّنت قبل عملية الطية وبحث النظريات الدائمة الشاذوجانية للطيات ذات التداخل. إن سكما هذه الفواصل تشابه الفواصل bc التي وجدت في تكوين الطية، ونجمة الموديل المبكر، الرسومية (الشكل 5)، النوع الثاني لموديل أيضًا. يوحي اليرموك الطيوي ولكن مهلك على مفصل الطيوي.

اتجاه تكون الطية، يكون نوعان من الفواصل الشاذوجانية في مجوعة bc، النوع الأول يكون في جنوب شرق. النوع الثاني يكون من الفواصل الشاذوجانية في منتصف تكوين الطية، ويتم ربطها بشكل شاذوجانية. إن سكما هذه الفواصل تشابه الفواصل bc التي وجدت في المنطقة المستوية تكوين الطيوي. أثناء عملية الطية تكون الفواصل، فهي في الجناحين الشاذوجانين (الجيولوجيا الجيولوجية) قد حدث انضغاط للطبقات، يقوى معاها لسطح الطبقات مكونة الفائق المعكس، الذي دأب إلى التصير أثناء عملية الطي، وـ هـذا الإحتمال هوumoحتات في احتمالية أن هذا الفائق قد تكون نتيجة حركة الفواصل الملونة (Numan & Al-Azzawi،1993،) في الجنايح الشاذوجانين (الأقل ميلا) يتكون الفائق الايادييذي ذلك لأن المنطقة تمتاز أثناء تكون الطية في حدث الشاذوجانين، بشكل مداري في سطوح الطية مكونة 81. يوحي اليرموك الشاذوجانية: فتتكون الفواصل الايادييديل تتوافق عملية النشوء مع توزيع قوى الشاذوجانين، وانتباذ على طول الطي، معكسوس (Bles & Feuga،1986،) يقترح وجود فائق معكسوس فقط ولم ينفرد نوعية الفائق عندما تكون الطية غير متزامنة. أما في منطقة مستوية فإن الطية غير متزامنة وجود الفائق الإيادييديل يتوافق مع توزيع الإحجام وما ذكر سابقاً، أما في الفترة التي تقيد (strike slip Fault) أن أخذ الفواصل مضربين الإيادحة (Bles & Feuga،1986،) والتي أصلها نظام الفواصل الكائن hko التي يتنزف وتصبح فائق مضربين الإيادحة كيفر يؤثر على هندسية الطية الكبيرة. حاليا يجب الانتظار إلى عدم ملاحظة فواصل مضربين بشكل ظاهر على السطح ومؤثر على الصخور المتكتشفة، لكن من الجدير بالذكر أن هناك دراسات تؤكد وجود الإيادحة مضربين تحت سطحية أدت إلى فصل طية بعشيقة عن طية الفاضلية (العراوي،1982 و متع، 2000) حيث أفاد وجود هذّا الإيادحة في المنطقة وهذا يؤكد وينطلق من التصنيف الذي ذكره (Bles & Feuga،1986،) و هو:...
"After folding, strike-slip faults of mapped size can occur, displacing the folded structures. These faults seem to be due to the enhancement of strike-slip microfaults occurring before the folds."

The sources in Arabic

