Ostracoda Species from Upper Triassic of Baluti Formation (Amadiya Section) in Northern Iraq

Sanad A. Al-Khashab
Department of Geology
College of Science
University of Mosul

Jawaher M. Al-Halawachi
Department of Geology
College of Science
University of Mosul

(Received 21/1/2018 , Accepted 10/7/2018)

ABSTRACT

Five ostracode species have been described from Baluti Formation (Upper Triassic) of North Iraq, these are Fabanella A, Hungarella moorei (Jones)-Anderson, 1964, Ogoconcha cf. blakei (Sohn, 1968), Ogoconcha bristolensis (Anderson, 1964), Cytherella acuta Urlichs, 1972.

Keywords: Ostracode, Baluti Formation, Upper Triassic, North Iraq.

LOCATION

This study investigated Ostracodes from outcrop sections in core of Gara anticline near Sarki Village situated about (11 km) Southeastern Amadiya City, Dohuk province, Northern Iraq (latitude 36° 59' 30"north and longitude 43° 32'20" east) (Figs. 1,2).
Fig. 1: Northern Iraq map showing the location of the studied area.

Fig. 2: Satellite image showing the location of the studied section, Gara anticline core.

INTRODUCTION

Twenty-four samples were collected from the Baluti Formation in the studied section, which is identical to the lithology of the Balambo - Tanjero type section in the High Folded Zone (Bolton, 1958 in Buday, 1980), (Fig. 3).
Fig. 3: Lithological section of Baluti Formation, northern Iraq.

<table>
<thead>
<tr>
<th>Period/Epoch</th>
<th>Age</th>
<th>Formation</th>
<th>Thickness (m)</th>
<th>Sample No.</th>
<th>Lithology</th>
<th>Description</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triassic</td>
<td></td>
<td>Baluti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper</td>
<td>Triassic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhaetian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact with the Sarki</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B23</td>
<td></td>
<td>black Shale, fissility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B22</td>
<td></td>
<td>dark brown carbonate, to yallow color</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B20</td>
<td></td>
<td>Carb. with shale, yallow to light grey bed thick about 10 to 15cm, Interbedded with shale black fissility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B17</td>
<td></td>
<td>Carbonate, yellowish grey color motiled by shale which disapperec at the top of beds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B14</td>
<td></td>
<td>Massive bedded carbonate, with lenses of shale, yellowish color (my be iron aci) some time specially at the top silty carb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B12</td>
<td></td>
<td>Black shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B11</td>
<td></td>
<td>Brown carbonate collapse braccia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B9</td>
<td></td>
<td>Shale dark grey color fissility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B7</td>
<td></td>
<td>Recrystallized carbonate, dark grey colour divided to(3) beds thick 25 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B5</td>
<td></td>
<td>Lime stone (carbonate), brownish yellow color</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B3</td>
<td></td>
<td>Yellowish green marl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B2</td>
<td></td>
<td>Shale, dark grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B1</td>
<td></td>
<td>Shale, dark grey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kurra chine</td>
<td></td>
<td></td>
<td>Contact with kurra chine formation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Shale
- Limestone
- Marl
- Siltstone

Conformable and Gradational with Kurra

V. Scale: 1cm=1m
The formation of the studied location is about (32.4 m) thick. Lithologically, the lower part consists of shale, dark grey, yellowish green marl, limestone, brownish yellow color, shale yellowish color became at the top dark grey to black color (fissility), recrystallized carbonate, dark grey color divided into (3) beds with 25cm thick, brown carbonate collapse breccias, black shale. Upper part consists massive bedded carbonate with lenses of shale, yellowish color some time especially at the top silty carbonate; carbonate yellowish grey color mottled by shale which disappearance at the top of carbonate beds, with shale, yellow to light grey bed with a thick of 10 to 15cm. It is interbeded with shale black fissility, dark brown carbonate, to yellow color recrystallized lime. Both lower and upper boundaries of the formation are conformable and gradational (Bellen et al., 1959) except in well Tharthar-1. The conformable nature of the upper contact of the formation of some parts of Iraq (Ga’ara area, western Iraq) seems to be uncertain, due to the ascertained break between Triassic and Liassic, and the widespread and well known break in Triassic and Liassic in Saudi Arabia, southwestern Iran …etc. (Buday, 1980).

The present work is part of M.Sc. thesis investigating ostracode microfossil from Baluti Formation (Upper Triassic) from Amadiya section, at Geology Dept., Mosul University. All the figured specimens are deposited at Mosul university with a prefix (MUTBO) which is come from (MU =Mosul University, T = Triassic, B=Baluti Formation and O= Ostracoda).

SYSTEMATIC DESCRIPTION

The classification of (Morkhovan, 1963) and (Moore and Pitrat, 1961) was used for the systematic description.

Phylum CRUSTACEA Pennant 1777
Class Ostracoda Laterille 1806
Order Podocopida Muller 1894
Suborder Podocopina Sars 1866
Family Cytherideidae Sars, 1925
Genus Fabanella martin 1961

Type species: *Fabanella* prima martin 1961
Fabanella A
(Pl.1, Fig.1)

Material: one carapace.
Occurrence: Baluti Formation, Gara anticline, sample No.B5.
Dimensions (um): Length: 600, Height: 300, L/H: 2, Carapace (LV) MUTBO1:11.
Description: Carapace elongated (sub-rectangular) in outline, dorsal and ventral margin concave, but the ventral margin less than concavity from dorsal margin, surface fine reticulation, anterior broadly rounded, posterior margin acute, maximum height at the cardinal angle, maximum length at the mid height.
Remarks: The Iraqi species similar to *Fabanella boloniensis* (Jones) which recorded by the Anderson (1964), But differs in dorsal and ventral margins of Iraqi
type concavity more than the British type. The present species left under open name due to the lack of materials.

Suborder Metacopina Sylvester-Bradley 1961
SuperFamily Healdiacea Harlton 1933
Family Healiidea Harton 1933
Genus Hungarella Mehes 1911

Type species: *Bairdia?Problematica* Mehes, 1911, p. 21, pl. 2, Fig. 14 - 18.
Hungarella moorei (Jones)-Anderson, 1964
(Pl.1, Fig.2, 3)

1894 *Cytheridea moorei*, Jones, p. 165, pl. 9, Figs. 7 - 8. 1951'Ostracode 799'
Wicher, pl. 1, Fig. U.

1964 *Hungarella moorei* (Jones)-Anderson, p. 149, pl. 5, Fig. 94 - 95.
Material: Two carapace.
Occurrence: Baluti Formation, Gara anticline, sample No. B4
Dimensions (um): Length: 500, Height: 400, L/H: 1.25, Carapace (LV) MUTBO1:3.
Description: Carapace ovoid, small size with fine pitted surface, anterior margin narrow rounded, posterior margin broadly and evenly rounded, dorsal margin convex, ventral margin slightly convex.
Remarks: The Iraqi species similar to the *Hungarella moorei* (Jones), p. 149, pl. 5, Fig. 94 - 95. From Rhaetic Ostracoda from Britain, but differ from more convexity of dorsal margin.

Genus: Ogmoconcha Triebel, 1941
Type species: *Ogmoconcha contractual* Triebel, 1941, p. 377, pl. 14, Figs. 156-160.

Ogmoconcha cf. blakei (Sohn, 1968)
(Pl.1, Fig.4,5)
1992 *Ogmoconcha cf. blakei* (Sohn,1968) - Depeche and Crasquin, p. 461, pl.4, Fig.2
Material: Tow carapace.
Occurrence: Baluti Formation, Gara anticline, sample No.B4.
Dimensions (um): Length: 600, Height: 450, L/H: 1.5, Carapace (LV) MUTBO1:5.
Description: Carapace semi-oval, dorsal and ventral margins convex, smooth surface, anterior margin broadly, posterior margin narrowly rounded, maximum length at the mid carapace, maximum height at the mid length.
Remarks: The Iraqi species similar to *Ogmoconcha cf. blakei* (Sohn, 1968), p.461, pl.4, Fig.2. but differs from having strongly convex dorsal margin.
Ogmoconcha bristolensis (Anderson, 1964)
((pl. 1, Fig. 6, 7)

1992 Ogmoconcha bristolensis (Anderson, 1964)-Depeche and Crasquin, p.461, pl.4, Fig. 3.

Material: One carapace.
Description: Carapace semi-oval, dorsal and ventral margins slightly convex, smooth surface, anterior margin broadly rounded, posterior margin narrowly rounded.
Remarks: The Iraqi specimens completely identical with the Ogmoconcha bristolensis (Anderson, 1964), recorded by the Depeche and Crasquin of Australian.

Suborder Platycopina Sars 1866
Family Cytherellidae Sars 1866
Genus Cytherella Jones 1849
Type species: Cytherella Ovata Romer, 1840,P.104, PL.16, Fig.21.

Cytherella acuta Urlichs, 1972
(pl.1, Fig.8, 9)

1972 Cytherella acuta Urlichs Depeche and Crasquin, p. 460, pl. 3, Fig. 8.

Material: one carapace.
Length: 700, Height: 400, L/H: 1.75, Carapace (RV) MUTBO1:2.
Description: Carapace small size, shape elongated (sub-rectangular), surface smooth to finely pit, maximum length along central line of the carapace. Dorsal and ventral margin nearly parallel. Anterior margin broadly and evenly rounded, posterior margin rounded, right valve larger than the left valve. Overlap seen along the carapace margins.
Remarks: The Iraqi species is similar to Cytherella acuta Urlichs, p. 460, pl. 3, Fig. 8. from Australian, but differ in ornamentation.

REFERENCES

PLATE 1

Fabanella A
1- Carapace: Left Lateral View, Sample No.B5.

Hungarella moorei (Jones)-Anderson, 1964

Ogmoconcha cf. blakei (Sohn, 1968)
4- Carapace: Left Lateral View, Sample No.B4.

Ogmoconcha bristolensis (Anderson, 1964)
6- Carapace: Left Lateral View, Sample No.B4.

7- Carapace: Dorsal View, Sample No.B4.

Cytherella acuta Urlichs, 1972

Plate 1

1
2
3
4
5
6
7
8
9

bar scale: 1cm = 200um