Main Subjects : Geomorphology

Geomorphological Assessment Using Geoinformatics Applications of the Sloping System of Al-Ashaali Drainage Basin at Iraqi Southern Desert

Bashar Maaroof

Iraqi National Journal of Earth Science, 2022, Volume 22, Issue 1, Pages 38-54
DOI: 10.33899/earth.2022.133146.1009

: The research dealt with the study of the slope systems of the Ashaali drainage basin in the southern Iraqi desert, using the geoinformatics technique, digital elevation models (DEM), satellite images of the Landsat ETM+8, topographic, geological, and hydrological maps. The slope systems of the study area were studied through 4 topographic sectors (longitudinal and transverse) that represented the stages of geomorphological development of the drainage basin according to the Davis erosion cycle, as well as by knowing the regression categories according to the young classification, the direction of the slopes, the sloping parts and the types of slopes (straight, convex, concave). The results showed an increase in the area of the slope category 5-10, which reached 25.499%, as well as an increase in the percentage of the direction of the southwestern slopes, which reached 16.277%, which is the highest percentage. As for the sloping parts, the maturity area recorded the highest percentage, estimated at 251 slope parts. In addition, the results showed that there is variation in the types of slopes, and the central basin area (maturity stage) of the geomorphological cycle represented all types.

The Influence of Shell Permeability on Stability of Upstream Slope during Rapid Drawdown – Khassa Chai Earth Dam as a Case Study

Krikar Noori; Sirwan Salim

Iraqi National Journal of Earth Science, 2021, Volume 21, Issue 2, Pages 15-28
DOI: 10.33899/earth.2021.170383

Several factors affect the stability of earth dam during sudden drawdowns such as permeability and mechanical properties of soil, upstream side slope, drawdown ratio, and drawdown rate. This paper investigates the influence of shell permeability on earth dam upstream slope stability and its role in the change of pore water pressure at different locations of the embankment during the sudden drawdown, using different limit equilibrium methods. To accomplish the objective of this study, (Geo Studio 2012 Software) as one of the powerful geotechnical programs was used for the modeling and numerical analysis. The study shows that decreasing in the shell permeability resulted in the reduction of pore water pressure dissipation and variation of shell hydraulic conductivity plays a vital role in the overall stability of the upstream slope under rapid drawdown conditions.

Specifying the Vegetation Cover Changes in Komel River River Using Remote Sensing Techniques

Mahmoud Hamrawi; Ibrahim Ibrahim

Iraqi National Journal of Earth Science, 2021, Volume 21, Issue 2, Pages 17-26
DOI: 10.33899/earth.2021.170387

This study aims to specify the changes that occurred in the vegetation cover of the Komel River basin located in the northeastern Shikan distract in the Duhok –Kurdistan region in Iraq with a total area equal 536.000 km2. Two images from LANDSAT 8 represent the study area for two different periods: the first one on 7/4/2018 during the spring period and the second one on 2/10/2020 during the autumn period. In this study, the vegetation cover is analyzed for the two periods taking into account the differences in annual temperature and rainfall. The final result of this study shows that there is an agreement between the distribution of the vegetation cover and the annual temperature and rainfall, this compatibility is evident by the study of the area topography and its slopes in addition to rocks and soil types where the correlation coefficient, r =0.61.

Morphometric Characteristics of Erosion Activity in the Komel River Basin

Mahmoud Hamrawi; Ibrahim Ibrahim

Iraqi National Journal of Earth Science, 2021, Volume 21, Issue 2, Pages 1-16
DOI: 10.33899/earth.2021.170386

The study area is represented by the Komel River basin, which is located in Duhok Governorate, northern Iraq. Several secondary basins are selected in the northeast of Sheikhan district within the main Komel River basin. This basin is located between longitudes (43º 29´ 00= – 43º 10´ 30=) east, and latitudes (36º 57´ 30= – 36º 46´ 30=) north. The study aims to determine the erosion activity of the main Komel River basin and the secondary basins that make up the basin, by finding the morphometric characteristics and the shape of the hypsometric curve for these basins using the WMS7.1 Watershed Modeling System program. The results of the morphometric analysis are represented by the value of (Hi) and the shape of the hypsometric curve of the Great Komel River basin and its secondary basins showing a discrepancy in erosion activity from one basin to another. The topographical variation of the basins such as the rocky discoveries and the vegetation cover of each basin has been seen. The morphometric characteristics of the basins in general and the main basin, in particular, show the possibility of exploiting the main Komel basin in the water harvesting, as it is a basin in the maturity stage presented by the (Hi) value of (0.40) and is compatible with its hypsometric curve shape. The validity of the Komel River basin in the field of water harvesting is an encouraging conclusion for the development of planting this area with forest trees, pastoral plants, and crops. In a manner that suits the climatic environment of the region, especially if we take into account the basin area of (536,253) square kilometers, which will make the area a facility Tourist.

Selection of the Optimum Sites for the Wind Turbines Installation in Nineveh Governorate by using GIS

Ghada Younis; Sabah Ali

Iraqi National Journal of Earth Science, 2021, Volume 21, Issue 1, Pages 1-16
DOI: 10.33899/earth.2021.170376

Green energy, including wind energy, becomes a vital component of reducing air pollution and enhancing its sustainability. Wind energy production increases rapidly due to its significant turbine technologies, compatible with sources of energy-environment friendly in reducing Carbon emissions. This paper presents an evaluation of wind power potential of Nineveh governorate in the northern part of Iraq based on the GIS technique using 20 years daily wind speed and direction at elevation 10m, 50m on earth surface covering the period of 2000 to 2019 obtained from NASA agency. It is observed that Nineveh Governorate and its surrounding have a wind speed between 2.8 and 3.7m/s at 10m, and wind speed between 3.9 and 5.3m/s at 50m. The annual mean power density ranges from 54 to 124 W/m2 at 50m.These results indicate that the monthly variation recorded for the speed is maximum 3.7m/s at 10m and a value of 5.3 m/s at 50m in the northwest direction in Hadhar site which matched with the results obtained by GIS/ IDW interpolation map of the power density.

The Study of Lithology by Using the Cross-Section Profiles of The Logs of Shiranish and Mushorah Formations in Ain Zalah and Butmah Fields, Northwestern Iraq

Faris Hassan; Wissam Mohamed; Wafaa Yunus; Abdul-Salam Salih

Iraqi National Journal of Earth Science, 2021, Volume 21, Issue 1, Pages 17-26
DOI: 10.33899/earth.2020.170378

This study deals with the determination of lithology in the Shiranish and Mushorah Formations in wells (Az-24, Az-29, and But-15). The graphical representation of the neutron porosity log (NØ) and the bulk density ρ)b(, shows that the Shiranish (Late Campanian – Early Maastrichtian) and Mushorah (Early Campanian) Formations consist of limestone and dolomite, as well as shale. The proportion of dolomite and chert increases at the expense ofcalcite in the Mushorah Formation. Also, the graphical representation results of the M-N profile for each well indicate that the limestone of the Mushorah Formation were affected by the dolomitization with the development of secondary porosity. Moreover, the limestones were suffered silicification in the form of chert nodules. The MID profile, used in this study to determine the mineralogy gives better and more precise results than that of the M-N profile. The results showed that the dominant minerals are calcite in the Shiranish Formation while dolomite and quartz in the Mushorah Formation, regardless of the gas effects within the studied wells.

Detecting the Tigris River Flood and its Impact on Residential and Touristic Areas in Mosul City Using Sentinel-2 Satellite Images

Abdalrahman Qubaa; Ayman Alsayiegh

Iraqi National Journal of Earth Science, 2020, Volume 20, Issue 1, Pages 92-106
DOI: 10.33899/earth.2020.170348

Iraq is one of the countries with water abundance because it contains water sources distributed between permanent and seasonal flow. The Tigris River is considered as one of these the most important sources, which requires the necessity to monitor the changes that had been taken place in the course of this river and to study the environmental, climatic and erosional changes that were responsible to change the morphodynamic properties of this resource, especially in the rainy years that cause floods and human disasters, such as what happened in the accident of the sinking of the ferry in the city of Mosul. Consequently, the main objective of the current study is based on observing a selected section of the Tigris River basin at the beginning of its entry into Mosul city and studying the effects of changing the water level during different seasons on the banks of the river and its effects on random housing construction near the river. A new European satellite (Sentinel) is used which has high spatial resolution of up to 10 m per pixel, which was the last launch of its series in April 2018. The new QGIS program is also used to process the satellite data, using digital processing methods for interpretation, and to monitor changes in the studied section of the river. Two satellite images are adopted for two consecutive periods (2018 and 2019), corrected and geographically referenced.
The conclusion is that there is an increase of 1.105 km2 in the area of the studied river section between the rainy year and the less rainy year, i.e. an approximate increase in excess of 50%. Therefore, the researchers recommend preventing the construction of any residential or touristic projects on the both Tigris River banks within at city of Mosul, and add to the forbidden areas a distance of not less than 50% of the surface area of  at any section of the river inside the city.

Morphometric Characteristics of Wadi Koysenjaq Basin In Erbil Using GIS

Asaad Al-Hussein; Abdulrahman Yahyaa

Iraqi National Journal of Earth Science, 2019, Volume 19, Issue 2, Pages 15-40
DOI: 10.33899/earth.2019.170275

This study aims for building a database of the morphometric characteristics of the valley of Koysenjaq basin throughout the analysis of the digital elevation model (DEM), using a range of geographic information systems, such as (Arc GIS v. 10.3), (Global Mapper v.18), as a means of measuring raster, linear and areal elements. They integrate together to produce a large number of variables and morphometric measurements. The study has adopted digital elevation model data accuracy of distinctive accuracy (14) meters in addition to a range of maps and satellite images.
The basin is located in the southeast southeast of Erbil Governorate and has a small area of about (549.56) km2, with a length of (34.26) km and long Perimeter compared with its large area (133.92) km. The basin has characteristics of different morphometric features as a result of the different climate change, geological nature, morphology, and characteristics of the soil, which indicates that the basin is at the beginning of its geomorphological cycle. The quantitative analysis shows that the value of the elongation is (0.68), circulation is (0.38) and the form factor is (0.46). This means that it is rectangular, and irregular in shape, and it obvious from the study of the characteristics of terrain that the value of basin relief is high (28.27) m/km, and passes in the early stage of maturity according to hypsometric integration value. The study shows the characteristics of the drainage network in the basin consists of (433) tributary distributed (6) arranged according to Strahler classification with low-density drainage (1.13) km/km2 and stream frequency for basin (0.78) stream/km2. This indicates that the number of tributaries of water is few compared with the area of the basin, so that the basin was not exposed to floods. 
The study recommends the use of more geographic information systems in determining the extent of seasonal drainage of the basin valleys in order to control the future flood risk, and good planning of the investment of these valleys in different fields through the construction of dam at the end of the basin for the purpose of harvesting water, and conducting morphometric studies compared to other river basins in Erbil Governorate to understand in detail its morphometric properties. 

Using Surveying and Computer Techniques to Calculate (R.A) & (RMSE) for Digital map of Technical Institute/Mosul

Mohammed Al–Taee

Iraqi National Journal of Earth Science, 2019, Volume 19, Issue 2, Pages 1-14
DOI: 10.33899/earth.2019.170273

The aim of the present research is to calculate the Relative Accuracy (R.A) and Root Mean Square Error (RMSE) for the location of Technical Institute, Mosul in Nineveh Governorate, Iraq.  at the northern part of Mosul city by using surveying Instruments (GPS 1230 , Total Station 06 & Level NAK2), to calculate the coordinates and elevations of (16) Ground Control Points which covered the study area.
The field data, remote sensing techniques and GIS software (Arc Map GIS10.3) are used to check the digital map of study area that helped the administrator to take the correct decision, determining positions of the future expansionist for buildings, roads, measuring lengths, areas and there coordinates, directions as well as the total costs estimation needed for any development from the final map.
The gradient percentage between the highest and lowest points is calculated to be (9.954%). Relative accuracy for the based measured points (R.A) = 1:60000), and Root Mean Square error in Easting coordinates (RMSE) = ± 0.102m, in Northing coordinates (RMSN) = ± 0.096m, the Root Mean Square for the resultant (RMSR) = ± 0.099m, and Root Mean Square for Elevations ( RMSRL)= ± 0.005m.
We Matched and correlated (10) measured points from study area with their graphic data positions on the aerial photo, determining the offsets for position and elevations as follows: (RMSE = ± 0.076m), (RMSN = ± 0.125m), (RMSR = ± 0.088m), and (Root Mean Square for Elevations = RMSRL= ± 0.045m).
This research enable us after checking the results to produce new maps from Aerial photograph or Digital Image to use it for land uses and future extensions in whole study area.

The Use of Factor Analysis in Defining Factors Responsible for the Variation of the Concentrations of Dissolved Major Ions in Tigris River Water from Fishkabur to Baghdad

Hisham Yahya Dhannoun; Hazim Mahmood

Iraqi National Journal of Earth Science, 2019, Volume 19, Issue 1, Pages 1-18
DOI: 10.33899/earth.2019.170268

The current study is based on the use of statistical techniques to study and identify factors controlling the concentrations of dissolved major elements in Tigris River water within a wide range of the river course, starting from Fishkabur region in the north to Baghdad city in the south.
The Results show that the rock compositions of the river basin mainly control the concentrations of the dissolved major ions in the river water with limited effect of anthropogenic factor, represented by human activities, that controls the nitrate ion concentration. The results also indicate the presence of spatial and temporal variations in the dissolved major ions concentrations, along the study area.  

Morphotectonic of Mushora-Dagh Structure North Western of Iraq Using Remote Sensing and Field Data

Hekmat Al-Daghstani; Ramzi Kh. Al-Nasir; Mumtaz M. AL-Jarjary

Iraqi National Journal of Earth Science, 2005, Volume 5, Issue 1, Pages 1-15
DOI: 10.33899/earth.2005.40980

A detaild morphotectonic study has been carried out for the Mushora Dagh Anticline. This anticline is situated to the northwestern part of Iraq about (95) km from Mosul City. The morphotectonic map deduced from the enhanced space imagery showing the existence of seven morphotectonic units, differences in their lithologic and morphologic characteristics, which has been affected by local and regional tectonic movements.
The morphotectonical analysis method included: first, study of directional analysis of structural lineaments and relation between their direction and the tectonic movements through the successive geological periods. Furthermore, upward concavity of the longitudinal profiles represents evidence of the appearance of some anomalies that can be attributed to a number of geologic and tectonical factors. Finally, three high anomaly values appeared while determining the index sinuosity of the Tigris River. These values agree with the first appearance of the surfaces of the transverse and longitudinal faults of Mushora-Dagh Anticline and the axis of this anticline.