Keywords : Mineral phases of cement


Evaluation of Sulphate Resistant Cement and Oil-well Cement Produced in Al-Hadbaa Cement Plant

Safaa Al-Jubouri; Sahra Al-Maadhidee

Iraqi National Journal of Earth Science, 2021, Volume 21, Issue 2, Pages 43-59
DOI: 10.33899/earth.2021.170391

Twenty-three samples are collected (9 samples of sulfate-resistant cement, 7 samples for each of the oil-well cement, class B and G) during four months from the production line of Al-Hadbaa cement plant, which operates in the wet production method, in Hammam Al-Alil district south of Mosul city. The research aims to evaluate the chemical and physical properties of sulfate-resistant cement and oil-well cement produced in the studied plant according to the approved standard specifications. Some of the samples are analyzed by X-ray diffraction device, and chemically by X-ray fluorescence and gravimetric titrimetric chemical methods. The results of physical tests are obtained (fineness by Blaine method and sieves, water-cement ratio, setting time (initial and final), soundness by autoclave method, and compressive strength) for cement of three types according to the requirements of the Iraqi Standard Specification (no.5, 1984). As well as the results of physical tests (mixing water percent, fineness, slurry density, thickening time, free fluid content, compressive strength, and dry cement density) for oil-well cement are according to the requirements of the American Petroleum Institute specifications for the samples taken from Al-Hadbaa cement plant, which is carried out within the requirements of quality control overproduction.
The study concludes that the results of chemical analysis, calculating some of the chemical moduli, percent of mineral phases, and results of physical tests for three types of cement are close in their values, ​​and conforming to the limits of chemical and physical requirements of the Iraqi Standard Specification (no.5, 1984). Except that the aluminate phase C3A content, which is more than the required limit. The results of chemical analysis, calculating the percent of mineral phases, and the results of physical tests for the studied oil-well cement are in conformity to the limits of chemical and physical requirements of the American Petroleum Institute Specifications (API 10A, 2010), for the cement type of moderate resistant for sulfate (class B and G). Except for the values ​​​​of alite phase C3S content, and alkalis (sodium) equivalent Na2OEQ for class G, which are not conforming to specifications.

Study of the Mineral and Chemical Variation of the Raw Material Mix Used for Production of the Clinker and the Sulfate Resistant Portland Cement of Al-Hadbaa Plant, Hammam Al-Alil, Iraq

Safaa Al-Jubouri; Sahra Al-Maadhidee

Iraqi National Journal of Earth Science, 2021, Volume 21, Issue 2, Pages 27-42
DOI: 10.33899/earth.2021.170389

Twenty-four samples (6 samples of raw material mix slurry, 9 samples of cement clinker, 9 samples of sulfate resistant cement) are collected during four months from the production line of Al-Hadbaa Cement Plant, which operates in a wet production method, in Hammam Al-Alil district, south of Mosul city. Some of the studied samples are analyzed for mineral diagnosis by X-ray diffraction device, chemical analysis by X-ray fluorescence device, gravimetric titrimetric chemical methods, and petrographic study for the clinker samples by reflected light microscope and using etching solutions. The research aims to study the variation of the mineral and chemical content in the studied samples.
The mineral and petrographical study show that there is no significant difference in the mineral content between the samples of the same type and that the difference is in the percentage of the presence of minerals. The raw materials mix mainly contains calcite and quartz. As for clinker and cement, it contains a lite phase C3S with a stable growth (pure) type with a monoclinic crystal system and a type of unstable growth (impure and containing inclusions) with a trigonal crystal system. In addition to the belite phase C2S of shapes β, α, and ᾱ, the aluminate phase C3A and C12A7 type and the alkaline type containing Na, the ferrite phase C4AF and C2F and the phase of fine crystalline glass. The chemical study indicates that the content of most of the main components SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, K2O, TiO2, MnO, P2O5, Cl, and LOI for the raw materials mix, clinker, and cement are close to the samples of the same type of the studied samples. It confirms the proposed specifications by some researchers, except for the deviation in K2O, Fe2O3. It is noticed from comparing the expected clinker content with the actual clinker, as well as calculating some of the qualitative control modules (lime saturation factor, silica, and alumina modulus) to the presence of relative stability in the content of the raw mix and cement produced in the studied cement plant.